|
|
|
Czworościan |
|
Sześcian |
|
Ośmiościan |
|
Dwunastościan |
|
Dwudziestościan |
|
|
|
Tetrahedron |
|
Cube |
|
Octahedron |
|
Dodecahedron |
|
Icosahedron |
`a` |
krawędź – edge length |
|
|
|
|
|
|
|
|
|
|
`h` |
wysokość – height |
|
`h = (a sqrt(6))/3 = r_c + r_i` |
|
`h = a = 2 r_i` |
|
`h = (a sqrt(6))/3 = 2 r_i` |
|
`h = a sqrt((25 + 11 sqrt(5))/10) = 2 r_i` |
|
`h = ((3 + sqrt(5)) a sqrt(3))/6 = 2 r_i` |
`A` |
powierzchnia całkowita – surface area |
|
`A = a^2 sqrt(3)` |
|
`A = 6 a^2` |
|
`A = 2 a^2 sqrt(3)` |
|
`A = 3 a^2 sqrt(5(5 + 2 sqrt(5)))` |
|
`A = 5 a^2 sqrt(3)` |
`V` |
objętość – volume |
|
`V = (a^3 sqrt(2))/12` |
|
`V = a^3` |
|
`V = (a^3 sqrt(2))/3` |
|
`V = ((7 sqrt(5) + 15) a^3)/4` |
|
`V = (5 (3 + sqrt(5))a^3)/12` |
`d` |
główna przekątna – volume diagonal |
|
|
|
`d = a sqrt(3) = 2 r_c` |
|
`d = a sqrt(2) = 2 r_c` |
|
`d = ((sqrt(5) + 1) a sqrt(3))/2 = 2 r_c` |
|
`d = (a sqrt(2(5 + sqrt(5))))/2 = 2 r_c` |
`r_c` |
promień sfery opisanej – circumsphere radius |
|
`r_c = (a sqrt(6))/4` |
|
`r_c = (a sqrt(3))/2` |
|
`r_c = (a sqrt(2))/2` |
|
`r_c = ((sqrt(5) + 1) a sqrt(3))/4` |
|
`r_c = (a sqrt(2(5 + sqrt(5))))/4` |
`r_m` |
promień sfery pośredniej – midsphere radius |
|
`r_m = (a sqrt(2))/4` |
|
`r_m = (a sqrt(2))/2` |
|
`r_m = a/2` |
|
`r_m = ((3 + sqrt(5)) a)/4` |
|
`r_m = ((1 + sqrt(5)) a)/4` |
`r_i` |
promień sfery wpisanej – insphere radius |
|
`r_i = (a sqrt(6))/12` |
|
`r_i = a/2` |
|
`r_i = (a sqrt(6))/6` |
|
`r_i = a sqrt((25 + 11 sqrt(5))/40)` |
|
`r_i = ((3 + sqrt(5)) a sqrt(3))/12` |
`A/V` |
stosunek powierzchni do objętości – surface-to-volume ratio |
|
`A/V = (6 sqrt(6))/a` |
|
`A/V = 6/a` |
|
`A/V = (3 sqrt(6))/a` |
|
`A/V = (3(7 - 3 sqrt(5))sqrt(5 + 2 sqrt(5)))/a` |
|
`A/V = (3 sqrt(3) (3 - sqrt(5)))/a` |