Wersja z 2019-12-18
Grzegorz Jagodziński
Liczby magiczne
W szkole podstawowej uczymy się tabliczki mnożenia. W dalszej nauce matematyki warto rozszerzyć pamięciową znajomość niektórych innych ciekawych liczb naturalnych. W tym zestawieniu liczby te są nazwane magicznymi. Są to niewielkie potęgi (kwadraty, sześciany, itd.) kolejnych liczb naturalnych większych od `1` (np. `2^2, 3^2, 4^2, …`), kolejne potęgi niewielkich liczb naturalnych (np. `3^2, 3^3, 3^4, …`), a także ich silnie. Dodatkowo (w osobnej tabeli) zebrano bisilnie, o których niżej, i iloczyny liczb pierwszych większych od 5. W poniższych zestawieniach podajemy wszystkie takie liczby jedno-, dwu- i trzycyfrowe, i zakończymy na liczbie `2^10 = 1024` lub na pierwszej liczbie większej od `1000`.
Silnią liczby `n`, oznaczaną `n!`, nazywamy iloczyn liczb naturalnych od `1` do `n`. Możemy zatem zapisać: `n! = 1 * 2 * 3 * … * n`. W obliczeniach praktycznych dobrze jest zacząć od największej liczby, co jest bez różnicy, bo mnożenie jest przemienne: `n! = n * (n - 1) * (n - 2) * … * 2 * 1`. A jeśli ktoś nie boi się bardziej zaawansowanych zapisów, może też przyjąć, że `n! = prod_(k = 1)^n k`, gdzie `n ge 1`. Przyjmujemy dodatkowo, że `0! = 1`.
Bisilnią lub silnią podwójną liczby `n`, oznaczaną `n!!`, nazywamy iloczyn liczb naturalnych dodatnich z krokiem `2`: `n!! = n * (n - 2) * (n - 4) * …`, przy czym ostatnią mnożoną liczbą jest `2` (dla `n` parzystych) lub `1` (dla `n` nieparzystych). Np. `5!! = 5 * 3 * 1 = 15`, `8!! = 8 * 6 * 4 * 2 = 384`.
Zestawienie 1
`n` |
|
`n^2` |
`n^3` |
`n^4` |
`n^5` |
`n^6` |
`n^7` |
`n^8` |
|
`2^n` |
`3^n` |
`4^n` |
`5^n` |
|
`n!` |
4 |
|
`2^2` |
|
|
|
|
|
|
|
`2^2` |
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`3!` |
8 |
|
|
`2^3` |
|
|
|
|
|
|
`2^3` |
|
|
|
|
|
9 |
|
`3^2` |
|
|
|
|
|
|
|
|
`3^2` |
|
|
|
|
16 |
|
`4^2` |
|
`2^4` |
|
|
|
|
|
`2^4` |
|
`4^2` |
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`4!` |
25 |
|
`5^2` |
|
|
|
|
|
|
|
|
|
|
`5^2` |
|
|
27 |
|
|
`3^3` |
|
|
|
|
|
|
|
`3^3` |
|
|
|
|
32 |
|
|
|
|
`2^5` |
|
|
|
|
`2^5` |
|
|
|
|
|
36 |
|
`6^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
`7^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
`8^2` |
`4^3` |
|
|
`2^6` |
|
|
|
`2^6` |
|
`4^3` |
|
|
|
81 |
|
`9^2` |
|
`3^4` |
|
|
|
|
|
|
`3^4` |
|
|
|
|
100 |
|
`10^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`5!` |
121 |
|
`11^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
|
`5^3` |
|
|
|
|
|
|
|
|
|
`5^3` |
|
|
128 |
|
|
|
|
|
|
`2^7` |
|
|
`2^7` |
|
|
|
|
|
144 |
|
`12^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
`13^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
`14^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
`6^3` |
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
`15^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
|
|
|
`3^5` |
|
|
|
|
|
`3^5` |
|
|
|
|
256 |
|
`16^2` |
|
`4^4` |
|
|
|
`2^8` |
|
`2^8` |
|
`4^4` |
|
|
|
289 |
|
`17^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
`18^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
|
`7^3` |
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
`19^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
`20^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
`21^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
`22^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
|
|
`8^3` |
|
|
|
|
|
|
`2^9` |
|
|
|
|
|
529 |
|
`23^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
|
`24^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
625 |
|
`25^2` |
|
`5^4` |
|
|
|
|
|
|
|
|
`5^4` |
|
|
676 |
|
`26^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
720 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`6!` |
729 |
|
`27^2` |
`9^3` |
|
|
`3^6` |
|
|
|
|
`3^6` |
|
|
|
|
784 |
|
`28^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
841 |
|
`29^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
900 |
|
`30^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
961 |
|
`31^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
1000 |
|
|
`10^3` |
|
|
|
|
|
|
|
|
|
|
|
|
1024 |
|
`32^2` |
|
|
`4^5` |
|
|
|
|
`2^10` |
|
`4^5` |
|
|
|
`n` |
|
`n^2` |
`n^3` |
`n^4` |
`n^5` |
`n^6` |
`n^7` |
`n^8` |
|
`2^n` |
`3^n` |
`4^n` |
`5^n` |
|
`n!` |
1296 |
|
`36^2` |
|
`6^4` |
|
|
|
|
|
|
|
|
|
|
|
1331 |
|
|
`11^3` |
|
|
|
|
|
|
|
|
|
|
|
|
2048 |
|
|
|
|
|
|
|
|
|
`2^11` |
|
|
|
|
|
2187 |
|
|
|
|
|
|
`3^7` |
|
|
|
`3^7` |
|
|
|
|
2401 |
|
`49^2` |
|
`7^4` |
|
|
|
|
|
|
|
|
|
|
|
3125 |
|
|
|
|
`5^5` |
|
|
|
|
|
|
|
`5^5` |
|
|
4096 |
|
`64^2` |
`16^3` |
`8^4` |
|
`4^6` |
|
|
|
`2^12` |
|
`4^6` |
|
|
|
6561 |
|
`81^2` |
|
`9^4` |
|
|
|
`3^8` |
|
|
`3^8` |
|
|
|
|
Kwadraty
Nagłówki wierszy to cyfry dziesiątek, nagłówki kolumn to cyfry jedności
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
0 |
1 |
4 |
9 |
16 |
25 |
36 |
49 |
64 |
81 |
1 |
100 |
121 |
144 |
169 |
196 |
225 |
264 |
289 |
324 |
361 |
2 |
400 |
441 |
484 |
529 |
576 |
625 |
676 |
729 |
784 |
841 |
3 |
900 |
961 |
1024 |
1089 |
1156 |
1225 |
1296 |
1369 |
1444 |
1521 |
Sześciany
Nagłówki wierszy to cyfry dziesiątek, nagłówki kolumn to cyfry jedności
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
0 |
1 |
8 |
27 |
64 |
125 |
216 |
343 |
512 |
729 |
1 |
1000 |
1331 |
1728 |
2197 |
2744 |
3375 |
4096 |
4913 |
5832 |
6859 |
Czwarte potęgi
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
1 |
16 |
81 |
256 |
625 |
1296 |
2401 |
4096 |
6561 |
|
|
Piąte potęgi
0 |
1 |
2 |
3 |
4 |
5 |
0 |
1 |
32 |
243 |
1024 |
3125 |
|
|
Szóste potęgi
0 |
1 |
2 |
3 |
4 |
0 |
1 |
64 |
729 |
4096 |
|
|
Siódme potęgi
|
|
Ósme potęgi
|
Potęgi 2
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
2048 |
4096 |
|
|
Potęgi 3
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
1 |
3 |
9 |
27 |
81 |
243 |
729 |
2187 |
|
|
Potęgi 4
0 |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
4 |
16 |
64 |
256 |
1024 |
4096 |
|
|
Potęgi 5
0 |
1 |
2 |
3 |
4 |
5 |
1 |
5 |
25 |
125 |
625 |
3125 |
|
Potęgi 6-9
`n` |
0 |
1 |
2 |
3 |
4 |
`6^n` |
1 |
6 |
36 |
216 |
1296 |
`7^n` |
1 |
7 |
49 |
343 |
2401 |
`8^n` |
1 |
8 |
64 |
512 |
4096 |
`9^n` |
1 |
9 |
81 |
729 |
6561 |
Zestawienie 2
|
|
`n^2` |
`n^3` |
`n^4` |
`n^5` |
|
`2^n` |
`3^n` |
|
`n!` |
`n!!` |
|
`7k` |
`11k` |
`13k` |
`17k` |
`19k` |
`23k` |
`29k` |
4 |
|
`2^2` |
|
|
|
|
`2^2` |
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
`3!` |
|
|
|
|
|
|
|
|
|
8 |
|
|
`2^3` |
|
|
|
`2^3` |
|
|
|
`4!!` |
|
|
|
|
|
|
|
|
9 |
|
`3^2` |
|
|
|
|
|
`3^2` |
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
`5!!` |
|
|
|
|
|
|
|
|
16 |
|
`4^2` |
|
`2^4` |
|
|
`2^4` |
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*3` |
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
`4!` |
|
|
|
|
|
|
|
|
|
25 |
|
`5^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
`3^3` |
|
|
|
|
`3^3` |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
`2^5` |
|
`2^5` |
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*3` |
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*5` |
|
|
|
|
|
|
36 |
|
`6^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*3` |
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
`6!!` |
|
|
|
|
|
|
|
|
49 |
|
`7^2` |
|
|
|
|
|
|
|
|
|
|
`7*7` |
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*3` |
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*5` |
|
|
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*3` |
|
|
64 |
|
`8^2` |
`4^3` |
|
|
|
`2^6` |
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*5` |
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*3` |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*11` |
`11*7` |
|
|
|
|
|
81 |
|
`9^2` |
|
`3^4` |
|
|
|
`3^4` |
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*5` |
|
|
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`29*3` |
91 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*13` |
|
`13*7` |
|
|
|
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*5` |
|
|
100 |
|
`10^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
`7!!` |
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*5` |
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*17` |
|
|
`17*7` |
|
|
|
120 |
|
|
|
|
|
|
|
|
|
`5!` |
|
|
|
|
|
|
|
|
|
121 |
|
`11^2` |
|
|
|
|
|
|
|
|
|
|
|
`11*11` |
|
|
|
|
|
125 |
|
|
`5^3` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
|
`2^7` |
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*19` |
|
|
|
`19*7` |
|
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*13` |
`13*11` |
|
|
|
|
144 |
|
`12^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`29*5` |
161 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*23` |
|
|
|
|
`23*7` |
|
169 |
|
`13^2` |
|
|
|
|
|
|
|
|
|
|
|
|
`13*13` |
|
|
|
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*17` |
|
`17*11` |
|
|
|
196 |
|
`14^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*29` |
|
|
|
|
|
`29*7` |
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*19` |
|
|
`19*11` |
|
|
216 |
|
|
`6^3` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*31` |
|
|
|
|
|
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*17` |
`17*13` |
|
|
|
225 |
|
`15^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
|
|
|
`3^5` |
|
|
`3^5` |
|
|
|
|
|
|
|
|
|
|
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*19` |
|
`19*13` |
|
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*23` |
|
|
|
`23*11` |
|
256 |
|
`16^2` |
|
`4^4` |
|
|
`2^8` |
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*37` |
|
|
|
|
|
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*41` |
|
|
|
|
|
|
289 |
|
`17^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*17` |
|
|
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*23` |
|
|
`23*13` |
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*43` |
|
|
|
|
|
|
319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*29` |
|
|
|
|
`29*11` |
323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*19` |
`19*17` |
|
|
324 |
|
`18^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*47` |
|
|
|
|
|
|
341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*31` |
|
|
|
|
|
343 |
|
|
`7^3` |
|
|
|
|
|
|
|
|
|
`7*7*7` |
|
|
|
|
|
|
361 |
|
`19^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*19` |
|
|
371 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*53` |
|
|
|
|
|
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*29` |
|
|
|
`29*13` |
384 |
|
|
|
|
|
|
|
|
|
|
`8!!` |
|
|
|
|
|
|
|
|
391 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*23` |
|
`23*17` |
|
400 |
|
`20^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*31` |
|
|
|
|
407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*37` |
|
|
|
|
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*59` |
|
|
|
|
|
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*61` |
|
|
|
|
|
|
437 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*23` |
`23*19` |
|
441 |
|
`21^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*41` |
|
|
|
|
|
469 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*67` |
|
|
|
|
|
|
473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*43` |
|
|
|
|
|
481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*37` |
|
|
|
|
484 |
|
`22^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*29` |
|
|
`29*17` |
497 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*71` |
|
|
|
|
|
|
511 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*73` |
|
|
|
|
|
|
512 |
|
|
`8^3` |
|
|
|
`2^9` |
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*47` |
|
|
|
|
|
527 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*31` |
|
|
|
529 |
|
`23^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*23` |
|
533 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*41` |
|
|
|
|
539 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*7*11` |
`11*7*7` |
|
|
|
|
|
551 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*29` |
|
`29*19` |
553 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*79` |
|
|
|
|
|
|
559 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*43` |
|
|
|
|
576 |
|
`24^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*83` |
|
|
|
|
|
|
583 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*53` |
|
|
|
|
|
589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*31` |
|
|
611 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*47` |
|
|
|
|
623 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*89` |
|
|
|
|
|
|
625 |
|
`25^2` |
|
`5^4` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*37` |
|
|
|
637 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*7*13` |
|
`13*7*7` |
|
|
|
|
649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*59` |
|
|
|
|
|
667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*29` |
`29*23` |
671 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*61` |
|
|
|
|
|
676 |
|
`26^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
679 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*97` |
|
|
|
|
|
|
689 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*53` |
|
|
|
|
697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*41` |
|
|
|
703 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*37` |
|
|
707 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*101` |
|
|
|
|
|
|
713 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*31` |
|
720 |
|
|
|
|
|
|
|
|
|
`6!` |
|
|
|
|
|
|
|
|
|
721 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*103` |
|
|
|
|
|
|
729 |
|
`27^2` |
`9^3` |
|
|
|
|
`3^6` |
|
|
|
|
|
|
|
|
|
|
|
731 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*43` |
|
|
|
737 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*67` |
|
|
|
|
|
749 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*107` |
|
|
|
|
|
|
763 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*109` |
|
|
|
|
|
|
767 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*59` |
|
|
|
|
779 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*41` |
|
|
781 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*71` |
|
|
|
|
|
784 |
|
`28^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*113` |
|
|
|
|
|
|
793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*61` |
|
|
|
|
799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*47` |
|
|
|
803 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*73` |
|
|
|
|
|
817 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*43` |
|
|
841 |
|
`29^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`29*29` |
847 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*11*11` |
`11*7*11` |
|
|
|
|
|
851 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*37` |
|
869 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*79` |
|
|
|
|
|
871 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*67` |
|
|
|
|
889 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*127` |
|
|
|
|
|
|
893 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*47` |
|
|
899 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`29*31` |
900 |
|
`30^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
901 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*53` |
|
|
|
913 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*83` |
|
|
|
|
|
917 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*131` |
|
|
|
|
|
|
923 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*71` |
|
|
|
|
931 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*7*19` |
|
|
|
|
|
|
943 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*41` |
|
945 |
|
|
|
|
|
|
|
|
|
|
`9!!` |
|
|
|
|
|
|
|
|
949 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`13*73` |
|
|
|
|
959 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*137` |
|
|
|
|
|
|
961 |
|
`31^2` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
973 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*139` |
|
|
|
|
|
|
979 |
|
|
|
|
|
|
|
|
|
|
|
|
|
`11*89` |
|
|
|
|
|
989 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`23*43` |
|
1000 |
|
|
`10^3` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1001 |
|
|
|
|
|
|
|
|
|
|
|
|
`7*11*13` |
`11*7*13` |
`13*7*11` |
|
|
|
|
1003 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`17*59` |
|
|
|
1007 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
`19*53` |
|
|
1024 |
|
`32^2` |
|
|
`4^5` |
|
`2^10` |
|
|
|
|
|
|
|
|
|
|
|
|
Darmowy hosting zapewnia PRV.PL